File size: 3,206 Bytes
13a81c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": [],
      "gpuType": "A100"
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    },
    "accelerator": "GPU"
  },
  "cells": [
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "aCl-IzLoDr2H"
      },
      "outputs": [],
      "source": [
        "!pip install -U transformers mamba-ssm"
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "# Load Models"
      ],
      "metadata": {
        "id": "SpRo_KJIRsxv"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "import torch\n",
        "from transformers import AutoTokenizer, AutoModelForCausalLM\n",
        "\n",
        "# Load tokenizer and model\n",
        "tokenizer = AutoTokenizer.from_pretrained(\"nvidia/NVIDIA-Nemotron-3-Nano-30B-A3B-BF16\")\n",
        "model = AutoModelForCausalLM.from_pretrained(\n",
        "    \"nvidia/NVIDIA-Nemotron-3-Nano-30B-A3B-BF16\",\n",
        "    torch_dtype=torch.bfloat16,\n",
        "    trust_remote_code=True,\n",
        "    device_map=\"auto\"\n",
        ")\n"
      ],
      "metadata": {
        "id": "waveliieEI1n"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "# Define Input with Tools"
      ],
      "metadata": {
        "id": "xjVkqaSdRx0_"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "from transformers.utils import get_json_schema\n",
        "\n",
        "def multiply(a: float, b: float):\n",
        "    \"\"\"\n",
        "    A function that multiplies two numbers\n",
        "\n",
        "    Args:\n",
        "        a: The first number to multiply\n",
        "        b: The second number to multiply\n",
        "    \"\"\"\n",
        "    return a * b\n",
        "\n",
        "messages = [\n",
        "    {\"role\": \"user\", \"content\": \"what is 2.0909090923 x 0.897987987\"},\n",
        "]\n",
        "\n",
        "tokenized_chat = tokenizer.apply_chat_template(\n",
        "    messages,\n",
        "    tools=[\n",
        "        multiply\n",
        "    ],\n",
        "    tokenize=True,\n",
        "    add_generation_prompt=True,\n",
        "    return_tensors=\"pt\"\n",
        ").to(model.device)\n"
      ],
      "metadata": {
        "id": "zxZZ7iMZETsw"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "# Inference"
      ],
      "metadata": {
        "id": "SVBAG3dLRw4v"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "outputs = model.generate(\n",
        "    tokenized_chat,\n",
        "    max_new_tokens=1024,\n",
        "    temperature=1.0,\n",
        "    top_p=1.0,\n",
        "    eos_token_id=tokenizer.eos_token_id\n",
        ")\n",
        "print(tokenizer.decode(outputs[0]))"
      ],
      "metadata": {
        "id": "BKYqPT5ORDx3"
      },
      "execution_count": null,
      "outputs": []
    }
  ]
}